cpu 上下文切换
在每个任务运行前,CPU 都需要知道任务从哪里加载、又从哪里开始运行,也就是说, 需要系统事先帮它设置好 CPU 寄存器和程序计数器(Program Counter,PC)。
CPU 寄存器,是 CPU 内置的容量小、但速度极快的内存。而程序计数器,则是用来存储 CPU 正在执行的指令位置、或者即将执行的下一条指令位置。它们都是 CPU 在运行任何 任务前,必须的依赖环境,因此也被叫做 CPU 上下文。
CPU 上下文切换,就是先把前一个任务的 CPU 上下文(也就是 CPU 寄存器和程序计数器)保存起来,然后加 载新任务的上下文到这些寄存器和程序计数器,最后再跳转到程序计数器所指的新位置, 运行新任务。
而这些保存下来的上下文,会存储在系统内核中,并在任务重新调度执行时再次加载进来。这样就能保证任务原来的状态不受影响,让任务看起来还是连续运行。
根据任务的不同,CPU 的上下文切换就可以分为几个不同的场景,也就是进程上下 文切换、线程上下文切换以及中断上下文切换。
进程上下文切换
Linux 按照特权等级,把进程的运行空间分为内核空间和用户空间,分别对应着下图中, CPU 特权等级的 Ring 0 和 Ring 3。
-
内核空间(Ring 0)具有最高权限,可以直接访问所有资源;
-
用户空间(Ring 3)只能访问受限资源,不能直接访问内存等硬件设备,必须通过系统 调用陷入到内核中,才能访问这些特权资源。
换个角度看,也就是说,进程既可以在用户空间运行,又可以在内核空间中运行。进程在 用户空间运行时,被称为进程的用户态,而陷入内核空间的时候,被称为进程的内核态。
从用户态到内核态的转变,需要通过系统调用来完成。比如,当我们查看文件内容时,就 需要多次系统调用来完成:首先调用 open() 打开文件,然后调用 read() 读取文件内容, 并调用 write() 将内容写到标准输出,最后再调用 close() 关闭文件。
那么,系统调用的过程有没有发生 CPU 上下文的切换呢?答案自然是肯定的。
CPU 寄存器里原来用户态的指令位置,需要先保存起来。接着,为了执行内核态代码, CPU 寄存器需要更新为内核态指令的新位置。最后才是跳转到内核态运行内核任务。
而系统调用结束后,CPU 寄存器需要恢复原来保存的用户态,然后再切换到用户空间,继 续运行进程。所以,一次系统调用的过程,其实是发生了两次 CPU 上下文切换。
不过,需要注意的是,系统调用过程中,并不会涉及到虚拟内存等进程用户态的资源,也 不会切换进程。这跟我们通常所说的进程上下文切换是不一样的:
进程上下文切换,是指从一个进程切换到另一个进程运行。
而系统调用过程中一直是同一个进程在运行。
所以,系统调用过程通常称为特权模式切换,而不是上下文切换。但实际上,系统调用过 程中,CPU 的上下文切换还是无法避免的。
那么,进程上下文切换跟系统调用又有什么区别呢?
首先,你需要知道,进程是由内核来管理和调度的,进程的切换只能发生在内核态。所以,进程的上下文不仅包括了虚拟内存、栈、全局变量等用户空间的资源,还包括了内核堆栈、寄存器等内核空间的状态。
因此,进程的上下文切换就比系统调用时多了一步:在保存当前进程的内核状态和 CPU 寄 存器之前,需要先把该进程的虚拟内存、栈等保存下来;而加载了下一进程的内核态后, 还需要刷新进程的虚拟内存和用户栈。
如下图所示,保存上下文和恢复上下文的过程并不是“免费”的,需要内核在 CPU 上运行 才能完成。
那么,进程在什么时候才会被调度到 CPU 上运行呢?
最容易想到的一个时机,就是进程执行完终止了,它之前使用的 CPU 会释放出来,这个时 候再从就绪队列里,拿一个新的进程过来运行。其实还有很多其他场景,也会触发进程调 度,在这里我给你逐个梳理下。
-
其一,为了保证所有进程可以得到公平调度,CPU 时间被划分为一段段的时间片,这些时 间片再被轮流分配给各个进程。这样,当某个进程的时间片耗尽了,就会被系统挂起,切 换到其它正在等待 CPU 的进程运行。
-
其二,进程在系统资源不足(比如内存不足)时,要等到资源满足后才可以运行,这个时 候进程也会被挂起,并由系统调度其他进程运行。
-
其三,当进程通过睡眠函数 sleep 这样的方法将自己主动挂起时,自然也会重新调度。
-
其四,当有优先级更高的进程运行时,为了保证高优先级进程的运行,当前进程会被挂 起,由高优先级进程来运行。 最后一个,发生硬件中断时,CPU 上的进程会被中断挂起,转而执行内核中的中断服务程 序。
了解这几个场景是非常有必要的,因为一旦出现上下文切换的性能问题,它们就是幕后凶 手。
线程上下文切换
线程与进程最大的区别在于,线程是调度的基本单位,而进程则是资源拥有的基本单位。 说白了,所谓内核中的任务调度,实际上的调度对象是线程;而进程只是给线程提供了虚 拟内存、全局变量等资源。
当进程只有一个线程时,可以认为进程就等于线程。
当进程拥有多个线程时,这些线程会共享相同的虚拟内存和全局变量等资源。这些资源 在上下文切换时是不需要修改的。
另外,线程也有自己的私有数据,比如栈和寄存器等,这些在上下文切换时也是需要保存的。
这么一来,线程的上下文切换其实就可以分为两种情况:
-
第一种, 前后两个线程属于不同进程。此时,因为资源不共享,所以切换过程就跟进程上 下文切换是一样。
-
第二种,前后两个线程属于同一个进程。此时,因为虚拟内存是共享的,所以在切换时, 虚拟内存这些资源就保持不动,只需要切换线程的私有数据、寄存器等不共享的数据。
到这里你应该也发现了,虽然同为上下文切换,但同进程内的线程切换,要比多进程间的切换消耗更少的资源,而这,也正是多线程代替多进程的一个优势。
中断上下文切换
为了快速响应硬件的事件,中断处理会打断进程的正常调度和执行,转而调用中断处理程序,响应设备事件。而在打断其他进程时,就需要将进程当前的状态保存下来,这样在中断结束后,进程仍然可以从原来的状态恢复运行。
跟进程上下文不同,中断上下文切换并不涉及到进程的用户态。所以,即便中断过程打断 了一个正处在用户态的进程,也不需要保存和恢复这个进程的虚拟内存、全局变量等用户 态资源。中断上下文,其实只包括内核态中断服务程序执行所必需的状态,包括 CPU 寄存 器、内核堆栈、硬件中断参数等。
对同一个 CPU 来说,中断处理比进程拥有更高的优先级,所以中断上下文切换并不会与
进程上下文切换同时发生。同样道理,由于中断会打断正常进程的调度和执行,所以大部 分中断处理程序都短小精悍,以便尽可能快的执行结束。
另外,跟进程上下文切换一样,中断上下文切换也需要消耗 CPU,切换次数过多也会耗费大量的 CPU,甚至严重降低系统的整体性能。所以,当你发现中断次数过多时,就需要注 意去排查它是否会给你的系统带来严重的性能问题。
小结
总结一下,不管是哪种场景导致的上下文切换,你都应该知道:
- CPU 上下文切换,是保证 Linux 系统正常工作的核心功能之一,一般情况下不需要我们 特别关注。
- 但过多的上下文切换,会把 CPU 时间消耗在寄存器s、内核栈以及虚拟内存等数据的保 存和恢复上,从而缩短进程真正运行的时间,导致系统的整体性能大幅下降。
排查思路
过多的上下文切换,会把 CPU 时间消耗在寄存器、内核栈以及虚 拟内存等数据的保存和恢复上,缩短进程真正运行的时间,成了系统性能大幅下降的一个 元凶。
vmstat 是一个常用的系统性能分析工具,主要用来分析系统的内存使用情况,也常用来分 析 CPU 上下文切换和中断的次数。
vmstat - Report virtual memory statistics
|
|
cs(context switch)是每秒上下文切换的次数。
in(interrupt)则是每秒中断的次数。
r(Running or Runnable)是就绪队列的长度,也就是正在运行和等待 CPU 的进程 数。
b(Blocked)则是处于不可中断睡眠状态的进程数。
vmstat 只给出了系统总体的上下文切换情况,要想查看每个进程的详细情况,就需要使用 我们前面提到过的 pidstat 了。给它加上 -w 选项,你就可以查看每个进程上下文切换的 情况了。
|
|
|
|
这个结果中有两列内容是我们的重点关注对象。一个是 cswch ,表示每秒自愿上下文切换 (voluntary context switches)的次数,另一个则是 nvcswch ,表示每秒非自愿上下文切换(non voluntary context switches)的次数。
这两个概念你一定要牢牢记住,因为它们意味着不同的性能问题:
所谓自愿上下文切换,是指进程无法获取所需资源,导致的上下文切换。比如说,I/O、内存等系统资源不足时,就会发生自愿上下文切换。
而非自愿上下文切换,则是指进程由于时间片已到等原因,被系统强制调度,进而发生的上下文切换。比如说,大量进程都在争抢 CPU 时,就容易发生非自愿上下文切换。
案列分析
工具安装
|
|
操作分析
运行sysbench,模拟系统多线程调度瓶颈
|
|
运行vmstat 查看情况
|
|
cs 快速上升,停止sysbench后,cs立刻下降,其它指标:
r 列:就绪队列的长度已经到了 8,远远超过了系统 CPU 的个数 2,所以肯定会有大量 的 CPU 竞争。
us(user)和 sy(system)列:这两列的 CPU 使用率加起来上升到了 100%,其中系 统 CPU 使用率,也就是 sy 列高达 84%,说明 CPU 主要是被内核占用了。
in 列:中断次数也上升到了 1 万左右,说明中断处理也是个潜在的问题。
继续分析是什么导致cpu占有率升高,使用工具pidstat进行分析
|
|
从 pidstat 的输出你可以发现,CPU 使用率的升高果然是 sysbench 导致的,它的 CPU 使用率已经达到了 100%。但上下文切换则是来自其他进程,包括非自愿上下文切换频率 最高的 pidstat ,以及自愿上下文切换频率最高的内核线程 kworker 和 systemd。
不过,细心的你肯定也发现了一个怪异的事儿:pidstat 输出的上下文切换次数,加起来也 就几百,比 vmstat 的 139 万明显小了太多。
通过运行 man pidstat ,你会发现,pidstat 默认显示进程的指标数据,加上 -t 参数后, 才会输出线程的指标。
|
|
现在你就能看到了,虽然 sysbench 进程(也就是主线程)的上下文切换次数看起来并不 多,但它的子线程的上下文切换次数却有很多。看来,上下文切换罪魁祸首,还是过多的 sysbench 线程。
前面在观察系统指标时,除了上下文切换频率骤然升 高,还有一个指标也有很大的变化。是的,正是中断次数。中断次数也上升到了 1 万,但 到底是什么类型的中断上升了,现在还不清楚。我们接下来继续抽丝剥茧找源头。
既然是中断,我们都知道,它只发生在内核态,而 pidstat 只是一个进程的性能分析工 具,并不提供任何关于中断的详细信息,怎样才能知道中断发生的类型呢?
没错,那就是从 /proc/interrupts 这个只读文件中读取。/proc 实际上是 Linux 的一个虚 拟文件系统,用于内核空间与用户空间之间的通信。/proc/interrupts 就是这种通信机制 的一部分,提供了一个只读的中断使用情况。
|
|
观察一段时间,你可以发现,变化速度最快的是重调度中断(RES),这个中断类型表 示,唤醒空闲状态的 CPU 来调度新的任务运行。这是多处理器系统(SMP)中,调度器 用来分散任务到不同 CPU 的机制,通常也被称为处理器间中断(Inter-Processor Interrupts,IPI)。
所以,这里的中断升高还是因为过多任务的调度问题,跟前面上下文切换次数的分析结果 是一致的。
现在再回到最初的问题,每秒上下文切换多少次才算正常呢?这个数值其实取决于系统本身的 CPU 性能。在我看来,如果系统的上下文切换次数比较稳定,那么从数百到一万以内,都应该算是正常的。但当上下文切换次数超过一万次,或者切换次数出现数量级的增长时,就很可能已经出现了性能问题。
这时,你还需要根据上下文切换的类型,再做具体分析。比方说:
- 自愿上下文切换变多了,说明进程都在等待资源,有可能发生了 I/O 等其他问题;
- 非自愿上下文切换变多了,说明进程都在被强制调度,也就是都在争抢 CPU,说明 CPU 的确成了瓶颈;
- 中断次数变多了,说明 CPU 被中断处理程序占用,还需要通过查看 /proc/interrupts 文件来分析具体的中断类型。
碰到上下文 切换次数过多的问题时,我们可以借助 vmstat 、 pidstat 和 /proc/interrupts 等工具,来辅助排查性能问题的根源。